(本小题满分12分)某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本);(2)工厂生产多少台产品时,可使盈利最多?
设数列 a n 的前 n 项和为 S n 。已知 a 1 = a , a n + 1 = S n + 3 n , n ∈ N * . (Ⅰ)设 b n = S n - 3 n ,求数列 b n 的通项公式; (Ⅱ)若 a n + 1 ≥ a n , n ∈ N * ,求 a 的取值范围。
如图,正四棱柱 A B C D - A 1 B 1 C 1 D 1 中, A A 1 = 2 , A B = 4 ,点 E 在 C C 1 上且 C 1 E = 3 E C 。 (Ⅰ)证明: A 1 C ⊥ 平面 B E D ; (Ⅱ)求二面角 A 1 - D E - B 的大小。
购买某种保险,每个投保人每年度向保险公司交纳保费 a 元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为 1 - 0 . 999 10 4 . (Ⅰ)求一投保人在一年度内出险的概率 p .
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).
在 △ A B C 中, cos B = - 5 13 , cos C = 4 5 . (Ⅰ)求 sin A 的值; (Ⅱ)设 △ A B C 的面积 S △ A B C = 33 2 ,求 B C 的长.
已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止; 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验。
求依方案甲所需化验次数不少于依方案乙所需化验次数的概率。