购买某种保险,每个投保人每年度向保险公司交纳保费 a 元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为 1 - 0 . 999 10 4 . (Ⅰ)求一投保人在一年度内出险的概率 p .
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).
(本小题满分12分) 设 (1)若在定义域D内是奇函数,求证: ; (2)若,且在[1,3]上的最大值是,求实数的值; (3)在(2)的条件下,若在上恒成立,求的取值范围.
(本小题满分10分) 根据下面的要求,求满足的最小的自然数。 (1)画出执行该问题的程序框图; (2)右下图是解决该问题的一个程序,但有2处错误,请找出错误并予以更正。
(本小题满分12分) 已知函数,. (1)用定义证明:不论为何实数在上为增函数; (2)若为奇函数,求的值; (3)在(2)的条件下,求在区间[1,5]上的最小值.
(本小题满分10分) 若函数的图象过点. (1)求的值; (2)求函数的定义域.
(本小题满分10分) 已知,. (1)求和; (2)定义运算,请在图中把表示“集合”的部分用阴影涂黑;并求.