一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为,求n的值.
计算:(1); (2)解不等式组,并在数轴上表示它的解集。
在直角坐标系中,A(-3,4),B(-1,-2),O为原点. (1)求△AOB的面积; (2)将这个三角形向上平移个单位长度,得△A/O/B/ ,再作△A/O/B/ 关于轴的对称图形△A//O//B//,试写出△A/O/B/ 和△A//O//B//各顶点的坐标.
若,满足5-2=4,且能使关于的方程6+7=0是一元一次方程,求的值.
如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=AB,已知△ABE≌△ADF. (1)在图中,可以通过平移、翻折、旋转中哪一种方法,使△ABE变到△ADF的位置; (2)线段BE与DF有什么关系?证明你的结论.
如图,BE、CF分别是 △ABC的边AC、AB上的高,且BP=AC,CQ=AB,求证:(1)AP=AQ;(2)AP⊥AQ