(本小题满分12分)已知平面区域被圆C及其内部所覆盖.(1)当圆C的面积最小时,求圆C的方程;(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.
如下图,已知点和单位圆上半部分上的动点.(1)若,求向量;(2)求的最大值.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(O为坐标原点),当< 时,求实数取值范围.
已知函数在上不具有单调性.(1)求实数的取值范围;(2)若是的导函数,设,试证明:对任意两个不相等正数不等式恒成立
已知直三棱柱中,△为等腰直角三角形,∠=90°,且=,、、分别为、、的中点.(1)求证:∥平面;(2)求证:⊥平面;(3)求二面角的余弦值
某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为80,90、90,100、100,110、110,120、120,130,由此得到两个班测试成绩的频率分布直方图:(I)完成下面2×2列联表,你能有97.5的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
(II)现从乙班50人中任意抽取3人,记表示抽到测试成绩在[100,120的人数,求的分布列和数学期望.附:,其中