(本小题满分10分)已知条件:和条件:,请选取适当的实数的值,分别利用所给的两个条件作为、构造命题“若则”,并使得构造的原命题为真命题,而其逆命题为假命题,则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.
(本小题满分13分)在△ABC中,角A,B,C所对的边分别为,满足,且. (1)求C的大小; (2)求的最大值,并求取得最大值时角A,B的值.
定义函数,其中,,. (Ⅰ)设函数,求的定义域; (Ⅱ)设函数的图像为曲线,若存在实数使得曲线在处有斜率为的切线,求实数的取值范围; (Ⅲ)当且时,试比较与的大小(只写出结论).
已知椭圆的一个顶点是,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)已知矩形的四条边都与椭圆相切,设直线AB方程为,求矩形面积的最小值与最大值.
如图, 已知边长为2的的菱形与菱形全等,且,平面平面,点为的中点. (Ⅰ)求证:平面; (Ⅱ)求证:; (Ⅲ)求三棱锥的体积.
某校高三年级共有300人参加数学期中考试,从中随机抽取4名男生和4名女生的试卷,获得某一道题的样本,该题得分的茎叶图如图。 (Ⅰ)求样本的平均数; (Ⅱ)设该题得分大于样本的平均数为合格,根据样本数据估计该校高三年级有多少名同学此题成绩合格; (Ⅲ)在这4名男生和4名女生中,分别随机抽取一人,求该题女生得分不低于男生得分的概率.