(本小题满分12分)计算下列各式:(1);(2).
(12分)已知圆C1:与圆C2:相交于A、B两点。⑴ 求公共弦AB的长;⑵ 求圆心在直线上,且过A、B两点的圆的方程;⑶ 求经过A、B两点且面积最小的圆的方程。
(12分) 已知在抛物线上,的重心与此抛物线的焦点F重合。⑴ 写出该抛物线的标准方程和焦点F的坐标;⑵ 求线段BC的中点M的坐标;⑶ 求BC所在直线的方程。
(12分) 已知四棱锥,底面ABCD,其三视图如下,若M是PD的中点⑴ 求证:PB//平面MAC;⑵ 求直线PC与平面MAC所成角的正弦值。
(12分)已知有两个不等的负根,无实数根,若p或q为真,p且q为假,求m的取值范围。
已知圆的方程为,过点作直线与圆交于、两点。(1)若坐标原点O到直线AB的距离为,求直线AB的方程;(2)当△的面积最大时,求直线AB的斜率;(3)如图所示过点作两条直线与圆O分别交于R、S,若,且两角均为正角,试问直线RS的斜率是否为定值,并说明理由。