(本题14分)已知函数,。(1)当t=8时,求函数的单调区间;(2)求证:当时,对任意正实数都成立;(3)若存在正实数,使得对任意的正实数都成立,请直接写出满足这样条件的一个的值(不必给出求解过程)
(本小题满分12分)已知函数f(x)=ax3+bx+c (a>0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导数f/(x)的 最小值为-12,求a,b,c的值.
(本小题满分12分)如图所示,圆的直径,为圆周上一点,,过作圆的切线,过作的垂线,垂足为,求∠DAC
(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为的正方形,E为PC的中点,PB=PD.(1)证明:BD ⊥平面PAC.(2)若PA=PC=2,求三棱锥E-BCD的体积。
已知是首项为19,公差为-4的等差数列,为的前项和.(Ⅰ)求通项及;(Ⅱ)设是首项为1,公比为2的等比数列,求数列的通项公式及其前项和.
(本小题满分10分)设锐角三角形ABC的内角A,B,C的对边长分别为,b ,c ,.(1)求的大小;(2)若,,求b.