(本小题满分12分)在△中,点,,,为的中点,.(Ⅰ)求边上的高所在直线的方程;(Ⅱ)求所在直线的方程.
(本题10分) 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
(Ⅰ)填充频率分布表的空格(将答案直接填在表格内); (Ⅱ)补全频率分布直方图; (Ⅲ)学校决定成绩在75.5~85.5分的学生为二等奖, 问该校获得二等奖的学生约为多少人?
在数列中,,,令,(1)求的值 (2)求的前项和.(10分)
(本小题共14分)已知数列中,,设.(Ⅰ)试写出数列的前三项;(Ⅱ)求证:数列是等比数列,并求数列的通项公式;(Ⅲ)设的前项和为,求证:.
(本小题共14分)设函数.(Ⅰ)求函数的定义域及其导数;(Ⅱ)当时,求函数的单调区间;(Ⅲ)当时,令,若在上的最大值为,求实数的值.
(本小题共13分)在平面直角坐标系中,已知圆的圆心为,过点且斜率为的直线与圆相交于不同的两点.(Ⅰ)求圆的面积;(Ⅱ)求的取值范围;(Ⅲ)是否存在常数,使得向量与共线?如果存在,求的值;如果不存在,请说明理由.