本题满分分已知A,B,C,D,E,F是边长为1的正六边形的6个顶点,在顶点取自A,B,C,D,E,F的所有三角形中,随机(等可能)取一个三角形.设随机变量X为取出三角形的面积.(Ⅰ) 求概率P ( X=);(Ⅱ) 求数学期望E ( X ).
(本题满分14分)已知抛物线的焦点为F,点P是抛物线上的一点,且其纵坐标为4,.(1)求抛物线的方程;(2)设点,()是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程.
(本小题满分14分)设数列是公比为正数的等比数列,,.(1)求数列的通项公式;(2)若数列满足:,求数列的前项和.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.(1)若ABBC,CPPB,求证:CPPA:(2)若过点A作直线⊥平面ABC,求证://平面PBC.
【原创】设复数,(1)若,,求复数的实部为奇数,虚部为偶数的概率;(2) 若,,设表示直线与圆的交点个数,列出的概率分布列,并求出的数学期望;
(本小题满分12分)已知向量,函数.(1)求函数的单调递增区间;(2)在中,角的对边分别为,若,,,求的面积.