(本小题满分12分)如图,A,B,C三个观察哨,A在B的正南,两地相距6km,C在B的北偏东60°,两地相距4km.在某一时刻,A观察哨发现某种信号,并知道该信号的传播速度为1km/s;4秒后B,C两个观察哨同时发现这种信号.在以过A,B两点的直线为y轴,以线段AB的垂直平分线为x轴的平面直角坐标系中,试求出发了这种信号的地点P的坐标.
在△ABC中,角A,B,C所对的边分别为,b,c,且,=1,b=2. (1)求∠C和边c; (2)若,,且点P为△BMN内切圆上一点,求的最值.
已知函数(为常数)。 (1)若是函数的一个极值点,求的值; (2)当时,试判断的单调性; (3)若对任意的存在,使不等式恒成立,求实数的取值范围.
设公差不为0的等差数列, 恰好是等比数列的前三项,。 (1)求数列、的通项公式; (2)记数列的前n项和为,若对任意的, 恒成立,求实数的取值范围.
已知函数。 (1)求函数的最小正周期和值域; (2)若为第二象限角,且,求的值.
已知抛物线的通径长为4,椭圆的离心率为,且过抛物线的焦点. (1)求抛物线和椭圆的方程; (2)过定点引直线交抛物线于两点(点在点的左侧),分别过作抛物线的切线,且与椭圆相交于两点.记此时两切线的交点为点. ①求点的轨迹方程; ②设点,求的面积的最大值,并求出此时点的坐标.