长方体的全面积为11,十二条棱长度之和为24,求这个长方体的一条对角线长。
(本小题13分)某工厂要建造一个无盖长方体水池,底面一边长固定为8,最大装水量为72,池底和池壁的造价分别为元、元,怎样设计水池底的另一边长和水池的高,才能使水池的总造价最低?最低造价是多少?
(本小题13分)若不等式的解集是,求不等式的解集.
(本小题12分)在等比数列中,,公比,前项和,求首项和项数.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 已知函数()在区间上有最大值和最小值.设. (1)求、的值; (2)若不等式在上有解,求实数的取值范围; (3)若有三个不同的实数解,求实数的取值范围.
定义,,…,的“倒平均数”为().已知数列前项的“倒平均数”为,记(). (1)比较与的大小; (2)设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立?若存在,求出最大的实数;若不存在,说明理由. (3)设数列满足,(且),(且),且是周期为的周期数列,设为前项的“倒平均数”,求.