(本小题满分12分)某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量(单位:微克)与时间(单位:小时)之间近似满足如图所示的曲线.(Ⅰ)写出第一次服药后与之间的函数关系式;(Ⅱ)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效.问:服药多少小时开始有治疗效果?治疗效果能持续多少小时?(精确到0.1)(参考数据:).
(满分14分)已知函数,(),若同时满足以下条件: ①在D上单调递减或单调递增; ②存在区间[]D,使在[]上的值域是[],那么称()为闭函数. (1)求闭函数符合条件②的区间[]; (2)判断函数是不是闭函数?若是请找出区间[];若不是请说明理由; (3)若是闭函数,求实数的取值范围. (注:本题求解中涉及的函数单调性不用证明,直接指出是增还是减函数即可)
(满分14分)设(为实常数)。(1)当时,证明:①不是奇函数;②是上的单调递减函数。(2)设是奇函数,求与的值。
(满分14分)已知是定义在上的偶函数,当时,(1)求的值;(2)求的解析式;并画出简图; (3)利用图象讨论方程的根的情况。(只需写出结果,不要解答过程).
(满分14分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)
(满分12分)已知, (1)求和;(2)若记符号,①在图中把表示“集合”的部分用阴影涂黑; ②求和.