(本小题满分12分)已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)若关于的方程在区间上有两个不同的实数根,求实数的取值范围.
在中,角、、的对边分别为、、,且,.(Ⅰ)求的值;(Ⅱ)设函数,求的值.
设无穷等比数列的公比为q,且,表示不超过实数的最大整数(如),记,数列的前项和为,数列的前项和为.(Ⅰ)若,求;(Ⅱ)证明: ()的充分必要条件为;(Ⅲ)若对于任意不超过的正整数n,都有,证明:.
已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.(Ⅰ)求k的取值范围;(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.
已知函数,其中是自然对数的底数,.(Ⅰ)求函数的单调区间;(Ⅱ)当时,求函数的最小值.
如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(Ⅰ)求证:AC⊥平面BDEF;(Ⅱ)求证:平面BDGH//平面AEF;(Ⅲ)求多面体ABCDEF的体积.