(本小题满分15分)如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为.(1)当时,求直路所在的直线方程;(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?
(本小题满分13分)已知函数(t∈R) . (Ⅰ)若曲线在处的切线与直线平行,求实数的值; (Ⅱ)若对任意的, 恒成立,求实数的取值范围.
已知数列为等比数列,其前项和为,已知,且对于任意的有成等差数列; (Ⅰ)求数列的通项公式; (Ⅱ)已知(),求.
(本小题共12分)“一站到底”是某电视台推出的大型游戏益智节目.某校高三年级为了解学生暑假期间的收视情况,从高中A,B层6个班共抽取了名学生,对他们累计收视时间进行统计,得到如下数据.
请根据下面的各班人数统计表和收视时间的频率分布直方图解决下列问题: (Ⅰ)抽查的人中,累计收视时间为~小时的人数有多少? (Ⅱ)经调查,累计收视时间不少于小时的学生均来自B层班.现采用分层抽样的方法,从累计收视时间不少于小时的学生中随机抽取名学生进行问卷调查,求这三个班级各抽取了多少名学生; (Ⅲ)在(Ⅱ)抽取的名学生中随机选取人进行访谈,求这名学生来自不同班级的概率.
(本小题满分12分)如图,四棱锥中,,∥,,. (1)求证:; (2)线段上若存在点,满足,求证:// 平面.
已知,. (I)求函数的单调递增区间; (II)函数的图象可以由函数的图象经过怎样的变换得到?