(本小题12分)已知椭圆的离心率为,为椭圆的右焦点,两点在椭圆上,且,定点。(1)若时,有,求椭圆的方程;(2)在条件(1)所确定的椭圆下,当动直线斜率为k,且设时,试求关于S的函数表达式f(s)的最大值,以及此时两点所在的直线方程。
在如图所示的几何体中,正方形ABCD和矩形ABEF所在的平面互相垂直,M为AF的中点,BN⊥CE. (1)求证:CF∥平面MBD; (2)求证:CF⊥平面BDN.
在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点. (1)求证:AF∥平面BCE; (2)求证:平面BCE⊥平面CDE.
直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点. (1)证明:MN∥平面A′ACC′; (2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)
如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1=. (1)求证:BC1∥平面A1CD; (2)求三棱锥D-A1B1C的体积.
如图,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.