(本题满分12分 第(1)小题6分,第(2)小题6分)已知:如图,在△ABC中,BD⊥AC于点D, CE⊥AB于点E,EC和BD相交于点O,联接DE. (1)求证:△EOD∽△BOC;(2)若S△EOD=16,S△BOC=36,求的值.
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1-x2|=。参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为直角三角形时,求b2-4ac的值;(2)当△ABC为等边三角形时,求b2-4ac的值.
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)判断DE与⊙O的位置关系并说明理由;(2)若tanC=,DE=2,求AD的长.
如图,定义:若双曲线 (k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线 (k>0)的对径.(1)求双曲线的对径.(2)若双曲线 (k>0)的对径是,求k的值.(3)仿照上述定义,定义双曲线 (k<0)的对径.
5月23、24日,兰州市九年级学生进行了中考体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出第一组的频率为0.04,丙同学计算出从左至右第二、三、四组的频数比为4:17:15.结合统计图回答下列问题:(1)这次共抽取了多少名学生的一分钟跳绳测试成绩?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩中的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?
如图(1),矩形纸片ABCD,把它沿对角线BD向上折叠,(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法)(2)折叠后重合部分是什么图形?说明理由.