(本题满分12分 第(1)小题6分,第(2)小题6分)已知:如图,在△ABC中,BD⊥AC于点D, CE⊥AB于点E,EC和BD相交于点O,联接DE. (1)求证:△EOD∽△BOC;(2)若S△EOD=16,S△BOC=36,求的值.
因式分解(每题5分,共计30分)(1) (2)(3)(4)(5)(6)
求下列各式中的值(每题3分,共计6分) (1)(2)
将下列各数按从小到大的顺序排列,用“<”号连结起来(本小题2分)、 、 、 、 、
(本题12分)某工厂计划为震区生产两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套型桌椅(一桌两椅)需木料,一套型桌椅(一桌三椅)需木料,工厂现有库存木料.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套型桌椅的生产成本为100元,运费2 元;每套型桌椅的生产成本为120元,运费4元,求总费用(元)与生产型桌椅(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用生产成本运费)(3)按(2)的方案计算,有没有剩余木料?如果有,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.
(10分) 把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.