(本题满分12分 第(1)小题6分,第(2)小题6分)已知:如图,在△ABC中,BD⊥AC于点D, CE⊥AB于点E,EC和BD相交于点O,联接DE. (1)求证:△EOD∽△BOC;(2)若S△EOD=16,S△BOC=36,求的值.
计算:
(1) ( 2 m + 3 n ) 2 - ( 2 m + n ) ( 2 m - n ) ;
(2) x - y x ÷ ( x + y 2 - 2 xy x ) .
如图①,要在一条笔直的路边上建一个燃气站,向同侧的、两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.
(1)如图②,作出点关于的对称点,线段与直线的交点的位置即为所求,即在点处建燃气站,所得路线是最短的.
为了证明点的位置即为所求,不妨在直线1上另外任取一点,连接、,证明.请完成这个证明.
(2)如果在、两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).
①生态保护区是正方形区域,位置如图③所示;
②生态保护区是圆形区域,位置如图④所示.
如图,在和△中,、分别是、上一点,.
(1)当时,求证△.
证明的途径可以用下面的框图表示,请填写其中的空格.
(2)当时,判断与△是否相似,并说明理由.
小明和小丽先后从地出发沿同一直道去地.设小丽出发第时,小丽、小明离地的距离分别为、.与之间的函数表达式是,与之间的函数表达式是.
(1)小丽出发时,小明离地的距离为 .
(2)小丽出发至小明到达地这段时间内,两人何时相距最近?最近距离是多少?
如图,在中,,是上一点,经过点、、,交于点,过点作,交于点.
求证:(1)四边形是平行四边形;
(2).