(本小题满分14分)已知动圆P(圆心为点P)过定点A(1,0),且与直线相切。记动点P的轨迹为C。(Ⅰ)求轨迹C的方程;(Ⅱ)设过点P的直线l与曲线C相切,且与直线相交于点Q。试研究:在x轴上是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由。
已知函数 (Ⅰ)当时,求函数的单调区间; (Ⅱ)若在是单调函数,求实数的取值范围.
如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4. (Ⅰ)若F为DE的中点,求证:BE//平面ACF; (Ⅱ)求直线BE与平面ABCD所成角的正弦值.
设向量,函数(其中).且的图像在y轴右侧的第一个最高点的横坐标是 (Ⅰ)求的值和单调增区间; (Ⅱ)如果在区间上的最小值为,求m的值
已知函数. (Ⅰ)若为定义域上的单调函数,求实数m的取值范围; (Ⅱ)当时,求函数的最大值; (Ⅲ)当,且时,证明:.
已知各项均不相等的等差数列的前四项和,且成等比. (Ⅰ)求数列的通项公式; (Ⅱ)设为数列的前n项和,若对一切恒成立,求实数的最小值.