(本小题满分14分)如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。(Ⅰ)求证:BO⊥PA;(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求的值;若不存在,说明理由。
2015年元旦联欢晚会某师生一块做游戏,数学老师制作了六张卡片放在盒子里,卡片上分别写着六个函数:分别写着六个函数:,.(1)现在取两张卡片,记事件A为“所得两个函数的奇偶性相同”,求事件A的概率;(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是奇函数则停止抽取,否则继续进行,记停止时抽取次数为,写出的分布列,并求其数学期望.
(本小题满分12分)已知函数.(1)求函数的最小正周期及单调递减区间;(2)当时,求的最大值,并求此时对应的的值.
已知双曲线的焦点到其渐近线的距离等于2,抛物线的焦点为双曲线的右焦点,双曲线截抛物线的准线所得的线段长为4,则抛物线方程为
已知函数,,.(1)若函数在区间内恰有两个零点,求实数的取值范围;(2)若,设函数在区间上的最大值为,最小值为,记,求函数在区间上的最小值.
设、是焦距等于的椭圆的左、右顶点,曲线上的动点满足,其中和分别是直线、的斜率.(1)求曲线的方程;(2)直线与椭圆只有一个公共点且交曲线于两点,若以线段为直径的圆过点,求直线的方程.