(本小题满分10分)在中内角的对边分别为,且 (1)求的值;(2)如果b=4,且a=c,求的面积.
已知等差数列的首项,公差,且第二项、第四项、第十四项分别是等比数列的第二项、第三项、第四项 (1)求数列与的通项公式; (2)设数列满足,求数列的前项和的最大值
设函数(),其中. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,求函数的极大值和极小值; (Ⅲ)当, 时,若不等式对任意的恒成立,求的值。
已知二次函数满足,且关于的方程的两实数根分别在区间(-3,-2),(0,1)内。 (1)求实数的取值范围; (2)若函数在区间(-1-,1-)上具有单调性,求实数C的取值范围
若定义在R上的函数对任意的,都有成立,且当时,。 (1)求证:为奇函数;(2)求证:是R上的增函数; (3)若,解不等式.
已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)= (1)写出年利润W(万元)关于年产量x(千件)的函数解析式; (2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)