设函数(),其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求函数的极大值和极小值;(Ⅲ)当, 时,若不等式对任意的恒成立,求的值。
设,其中a为正实数。 (1)当时,求的极值点; (2)若在R不是单调函数,求a的取值范围。
已知数列满足,且。 (1)求。 (2)猜想数列的通项公式,并用数学归纳法证明。
(1)证明:; (2)已知,求证:。
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球;乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (1)求在1次游戏中, ①摸出3个白球的概率; ②获奖的概率; (2)求在两次游戏中获奖次数的分布列及数学期望.
已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数)若直线与圆相切,求实数m的值.