遂宁中央商务区“与狼共舞”专卖店在销售中发现:一款中档服装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,“与狼共舞”专卖店的老板决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件服装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种服装上盈利1200元,那么每件服装应降价多少元?
如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE. (1)若∠C=30°,求证:BE是△DEC外接圆的切线; (2)若BE=,BD=1,求△DEC外接圆的直径.
某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件. (1)完成下表
(2)安排生产A、B两种产品的件数有几种方案?试说明理由; (3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.
妈妈买回6个粽子,其中1个花生馅,2个肉馅,3个枣馅.从外表看,6个粽子完全一样,女儿有事先吃. (1)若女儿只吃一个粽子,则她吃到肉馅的概率是 ; (2)若女儿只吃两个粽子,求她吃到的两个都是肉馅的概率.
如图,在平行四边形ABCD中,AD>AB. (1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法); (2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.
某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图. 根据以上信息,解答下列问题: (1)被调查的学生共有 人,并补全条形统计图; (2)在扇形统计图中,m= ,n= ,表示区域C的圆心角为 度; (3)全校学生中喜欢篮球的人数大约有多少?