一元二次方程x2+7x+9=1的根与二次函数y=x2+7x+9的图像有什么关系? 试把方程的根在图像上表示出来.
在直角坐标系中,设函数 y 1 = k 1 x ( k 1 是常数, k 1 > 0 , x > 0 ) 与函数 y 2 = k 2 x ( k 2 是常数, k 2 ≠ 0 ) 的图象交于点 A ,点 A 关于 y 轴的对称点为点 B .
(1)若点 B 的坐标为 ( - 1 , 2 ) ,
①求 k 1 , k 2 的值;
②当 y 1 < y 2 时,写出 x 的取值范围;
(2)若点 B 在函数 y 3 = k 3 x ( k 3 是常数, k 3 ≠ 0 ) 的图象上,求 k 1 + k 3 的值.
在① AD = AE ,② ∠ ABE = ∠ ACD ,③ FB = FC 这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.
问题:如图,在 ΔABC 中, ∠ ABC = ∠ ACB ,点 D 在 AB 边上(不与点 A ,点 B 重合),点 E 在 AC 边上(不与点 A ,点 C 重合),连接 BE , CD , BE 与 CD 相交于点 F .若 ① AD = AE ( ② ∠ ABE = ∠ ACD 或 ③ FB = FC ) ,求证: BE = CD .
注:如果选择多个条件分别作答,按第一个解答计分.
为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组,绘制成如图所示的频数表和未完成的频数分布直方图(每一组不含前一个边界值,含后一个边界值).
某校某年级360名学生一分钟跳绳次数的频数表
组别(次 )
频数
100 ~ 130
48
130 ~ 160
96
160 ~ 190
a
190 ~ 220
72
(1)求 a 的值;
(2)把频数分布直方图补充完整;
(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.
以下是圆圆解不等式组 2 1 + x > - 1 ① - 1 - x > - 2 ② 的解答过程:
解:由①,得 2 + x > - 1 ,
所以 x > - 3 .
由②,得 1 - x > 2 ,
所以 - x > 1 ,
所以 x > - 1 .
所以原不等式组的解是 x > - 1 .
圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.
已知抛物线 y = - 2 x 2 + bx + c 经过点 ( 0 , - 2 ) ,当 x < - 4 时, y 随 x 的增大而增大,当 x > - 4 时, y 随 x 的增大而减小.设 r 是抛物线 y = - 2 x 2 + bx + c 与 x 轴的交点(交点也称公共点)的横坐标, m = r 9 + r 7 - 2 r 5 + r 3 + r - 1 r 9 + 60 r 5 - 1 .
(1)求 b 、 c 的值;
(2)求证: r 4 - 2 r 2 + 1 = 60 r 2 ;
(3)以下结论: m < 1 , m = 1 , m > 1 ,你认为哪个正确?请证明你认为正确的那个结论.