已知函数 ,为的导数.(1)当时,求的单调区间和极值;(2)设,是否存在实数,对于任意的,存在,使得成立?若存在,求出的取值范围;若不存在,说明理由.
在四棱锥中,,,平面,,为的中点。 (Ⅰ)求证:平面; (Ⅱ)平面内是否存在一点,使平面?若存在,确定点的位置;若不存在,请说明理由。
定义为个正数的“均倒数”. 已知各项均为正数的数列的前项的“均倒数”为. (Ⅰ)求数列的通项公式; (Ⅱ)设,试求数列的前项和.
一个盒子装有六张卡片,上面分别写着如下六个函数:. (Ⅰ)从中任意拿取张卡片,其中至少有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率; (Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
已知锐角中内角、、所对边的边长分别为、、,满足,且. (Ⅰ)求角的值; (Ⅱ)设函数,图象上相邻两最高点间的距 离为,求的取值范围.
已知函数. (Ⅰ)求函数的单调区间和极值; (Ⅱ)当,且时,证明:.