在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=(Ⅰ)求角B的大小;(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1), 有最大值为3,求k的值.
椭圆:的离心率为,长轴端点与短轴端点间的距离为.(I)求椭圆的方程;(II)设过点的直线与椭圆交于两点,为坐标原点,若为直角三角形,求直线的斜率.
给定抛物线,是抛物线的焦点,过的直线与相交于两点.(1)设直线的斜率为1,求以为直径的圆的方程;(2)若,求直线的方程.
给出命题p:方程表示焦点在轴上的椭圆;命题q:曲线与轴交于不同的两点.如果命题“”为真,“”为假,求实数的取值范围
(本小题满分12分)设函数f(x)=m-mx-1.(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;(2)对于x∈[1,3],f(x)<0恒成立,求m的取值范围.
(本小题满分12分)已知抛物线,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.