(本小题满分6分)如图,在边长为的菱形中,,面,,、分别是和的中点.(1)求证: 面; (2)求证:平面⊥平面;(3)求与平面所成的角的正切值.
(本小题满分12分)已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图所示,从这10名学生中随机抽取两名成绩不低于73分的学生, 求被抽取到的两名学生的成绩之和不小于154分的概率.
(本小题满分12分)已知且.设函数(1)求函数的解析式;(2)若在锐角中,,边,求周长的最大值.
(本小题满分13分) 已知函数().(1)求函数的单调区间;(2)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由;(3)若,当时,不等式恒成立,求α的取值范围.
(本小题满分13分)已知分另为椭圆的上、下焦点,是抛物线的焦点,点是与在第二象限的交点, 且(1)求椭圆的方程;(2)与圆相切的直线交椭圆于,若椭圆上一点满足,求实数的取值范围.
(本小题满分13分)设数列的前项和为,对一切,点都在函数的图象上(1)求归纳数列的通项公式(不必证明);(2)将数列依次按1项、2项、3项、4项循环地分为(),,, ;,,,;, ..,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;(3)设为数列的前项积,若不等式对一切 都成立,其中,求的取值范围