(本小题满分13分) 已知函数().(1)求函数的单调区间;(2)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由;(3)若,当时,不等式恒成立,求α的取值范围.
如图,是圆的直径,、在圆上,、的延长线交直线于点、,.求证:(Ⅰ)直线是圆的切线;(Ⅱ).
设函数(,为常数)(Ⅰ)讨论的单调性;(Ⅱ)若,证明:当时,.
已知是椭圆的右焦点,圆与轴交于两点,是椭圆与圆的一个交点,且.(Ⅰ)求椭圆的离心率;(Ⅱ)过点与圆相切的直线与的另一交点为,且的面积等于,求椭圆的方程.
如图,四边形是正方形,,,, .(Ⅰ)求证:平面平面;(Ⅱ)若与所成的角为,求二面角的余弦值.
某种报纸,进货商当天以每份进价元从报社购进,以每份售价元售出。若当天卖不完,剩余报纸报社以每份元的价格回收。根据市场统计,得到这个季节的日销售量(单位:份)的频率分布直方图(如图所示),将频率视为概率。(Ⅰ)求频率分布直方图中的值;(Ⅱ)若进货量为(单位:份),当时,求利润的表达式;(Ⅲ)若当天进货量,求利润的分布列和数学期望(统计方法中,同一组数据常用该组区间的中点值作为代表).