(本小题满分13分)设数列的前项和为,对一切,点都在函数的图象上(1)求归纳数列的通项公式(不必证明);(2)将数列依次按1项、2项、3项、4项循环地分为(),,, ;,,,;, ..,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;(3)设为数列的前项积,若不等式对一切 都成立,其中,求的取值范围
(本小题满分15分)已知公差大于零的等差数列的前n项和为Sn,且满足:,. (1)求数列的通项公式; (2)若数列是等差数列,且,求非零常数c.
(本小题满分14分)已知. (1)若的解集是,求实数的值. (2)若,且,,求的取值范围.
(本小题满分14分)在中,已知,是边上的一点,,,,求的长.
(本小题满分10分) 将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为. (Ⅰ)若该硬币均匀,试求与; (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较与的大小.
(本小题满分10分) 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB="4AN," M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系. (Ⅰ)证明:CM⊥SN; (Ⅱ)求SN与平面CMN所成角的大小.