已知=,那么sin的值为 ,cos2的值为
已知指数函数满足:,定义域为的函数是奇函数。(Ⅰ)求,的值;(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围。
(本小题满分15分)如图,已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;(2)证明:直线PQ与圆O相切.
(本小题满分15分)已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若S2为S1,Sm(m∈N*)的等比中项,求正整数m的值.
(本小题满分16分)设为实数,函数.(1)若,求的取值范围;(2)求的最小值;(3)设函数,求不等式的解集.
(本小题满分16分)某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).