化极坐标方程ρ2cosθ-ρ=0为直角坐标方程.
(本小题满分10分)选修4-1:几何证明选讲. 如图,在中,是的角平分线,的外接圆交于点,. (Ⅰ)求证:; (Ⅱ)当时,求的长.
(本小题满分12分)已知函数f(x)=alnxax3(a∈R)。 (Ⅰ)求f(x)的单调区间 (Ⅱ)设a=-1,求证:当x∈(1,+∞)时,f(x)+2>0 (Ⅲ)求证:··……<(n∈N+且n≥2)
(本小题满分12分)设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N. (Ⅰ)若直线MN的斜率为,求C的离心率; (Ⅱ)若直线MN在y轴上的截距为2,且,求a,b.
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点. (Ⅰ)若PA=PD,求证:平面POB⊥平面PAD; (Ⅱ)试问在线段BC上是否存在点M,使DM//面POB,如存在,指出M的位置,如不存在,说明理由.
(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12. (Ⅰ)求该校报考飞行员的总人数; (Ⅱ)从这所学校报考飞行员的同学中任选一人,求这个人体重超过60公斤的概率.