先后2次抛掷一枚骰子,将得到的点数分别记为a,b.(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
如图所示,在正方体中,分别是棱的中点.(Ⅰ)证明:平面平面;(Ⅱ)证明://平面;(Ⅲ)若正方体棱长为1,求四面体的体积.
已知函数的最大值为了3,函数的图象的相邻两对称轴间的距离为2,在轴上的截距为2。(1)求函数的解析式;(2)求函数的单调递增区间。
已知数列的前n项和(其中c,k为常数),且2=4,6=83(Ⅰ)求;(Ⅱ)求数列的前n项和Tn.
(本小题满分14分)已知焦点在轴,顶点在原点的抛物线经过点,以抛物线上一点为圆心的圆过定点(0,1),记为圆与轴的两个交点.(1)求抛物线的方程;(2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论;(3)当圆心在抛物线上运动时,记,,求的最大值.
(本小题满分13分)已知函数,其中为常数.(1)当时,若在区间上的最大值为,求的值;(2)当时,若函数存在零点,求实数的取值范围.