如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.求证:BD⊥AA1;若四边形是菱形,且,求四棱柱的体积.
已知a>b>c且a+b+c=0,求证:.
已知x,yR+,且x+4y=1,则xy的最大值为.
如图,四面体ABCD中,O、E分别是BD、BC的中点, (I)求证:平面BCD; (II)求异面直线AB与CD所成角的余弦; (III)求点E到平面ACD的距离.
已知数列是首项为,公比的等比数列,, 设,数列. (1)求数列的通项公式;(2)求数列的前n项和Sn.
已知函数. (1)若使,求实数的取值范围; (2)设,且在上单调递增,求实数的取值范围.