甲、乙两名同学在5次英语口语测试中的成绩统计如下面的茎叶图所示. (1)现要从中选派一人参加英语口语竞赛,从统计学角度,你认为派哪位学生参加更合适,请说明理由; (2)若将频率视为概率,对学生甲在今后的三次英语口语竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望.
在平面直角坐标系xOy中,设椭圆C的中心在原点,焦点在x轴上,短半轴长为2,椭圆C上的点到右焦点的距离的最小值为. (1)求椭圆C的方程; (2)设直线l与椭圆C相交于A,B两点,且. ①求证:原点O到直线AB的距离为定值; ②求AB的最小值.
某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数模型制定奖励方案,试用数学语言表述该公司对奖励函数模型的基本要求,并分析函数是否符合这个要求,并说明原因; (2)若该公司采用函数作为奖励函数模型,试确定最小的正整数的值.
如图,在四棱锥中,底面为直角梯形,,垂直于底面,分别为的中点. (1)求证:; (2)求点到平面的距离.
在中,角,,所对的边分别是,,,已知,. (1)若的面积等于,求,; (2)若,求的面积.
从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A“取出的2件产品都是二等品”的概率P(A)=0.04 (1)求从该批产品中任取1件是二等品的概率; (2)若该批产品共10件,从中任意抽取2件;X表示取出的2件产品中二等品的件数,求X的分布列.