(本题满分12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按照5天一组分组统计,绘制了频率分布直方图(如图所示).已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列各题.(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪一组获奖率较高?
【改编】如图,在边长为1的等边三角形中,分别是边上的点,,是的中点,与交于点,将沿折起,使得平面平面,得到如图所示的三棱锥. (1)证明://平面; (2)证明:平面; (3)当时,求三棱锥的体积.
如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2 (1)求证:ADB'D; (2)求三棱锥A'-AB'D的体积。
【原创】如图, (1)求证 (2)若,求点到平面的距离.
求直线的倾斜角.(若,则有)
如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。 (1)求证:EF∥平面PAD; (2)求证:平面PAD⊥平面PCD