已知函数f(x)=x3-ax2+(a2-1)x+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y-3=0.(1)求a,b的值;(2)求函数f(x)的单调区间,并求出f(x)在区间[-2,4]上的最大值
设抛物线M方程为,其焦点为F,P((为直线与抛物线M的一个交点,(1)求抛物线的方程;(2)过焦点F的直线与抛物线交于A,B两点,试问在抛物线M的准线上是否存在一点Q,使得QAB为等边三角形,若存在求出Q点的坐标,若不存在请说明理由.
已知函数(1)求的单调区间;(2)设,若在上不单调且仅在处取得最大值,求的取值范围.
如下图(图1)等腰梯形PBCD,A为PD上一点,且AB⊥PD,AB=BC,AD=2BC,沿着AB折叠使得二面角P-AB-D为的二面角,连结PC、PD,在AD上取一点E使得3AE=ED,连结PE得到如下图(图2)的一个几何体.(1)求证:平面PAB平面PCD;(2)求PE与平面PBC所成角的正弦值.
在锐角三角形ABC中,角A,B,C所对的边分别为,且(1)求角A;(2)若,求的取值范围.
等比数列为递增数列,且,数列(n∈N※)(1)求数列的前项和;(2),求使成立的最小值.