化简求值:,其中,.
有一个二次函数的图象,三位学生分别说出了它的一些特点.甲:对称轴是直线x=4;乙:与x轴两交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3;请写出满足上述全部特点的二次函数解析式:
如图,在平面直角坐标系xOy中,AB在x轴上,以AB为直径的半⊙O’与y轴正半轴交于点C,连接BC,AC.CD是半⊙O’的切线,AD⊥CD于点D.(1)求证:∠CAD =∠CAB;(2)已知抛物线过A、B、C三点,AB=10,tan∠CAD=.① 求抛物线的解析式;② 判断抛物线的顶点E是否在直线CD上,并说明理由;③ 在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.
抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求此抛物线的解析式;(2)抛物线上是否存在点P,使,若存在,求出P点坐标;若不存在,请说明理由.
已知二次函数y=ax2-4x+c的图象过点(-1,0)和点(2,-9).(1)求该二次函数的解析式并写出其对称轴;(2)已知点P(2,-2),连结OP,在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).
如图,在中,以为直径的交于点,点为的中点,连结交于点,且.(1)判断直线与⊙O的位置关系,并证明你的结论;(2)若的半径为2,,求的长.