如图,在平面直角坐标系xOy中,AB在x轴上,以AB为直径的半⊙O’与y轴正半轴交于点C,连接BC,AC.CD是半⊙O’的切线,AD⊥CD于点D.(1)求证:∠CAD =∠CAB;(2)已知抛物线过A、B、C三点,AB=10,tan∠CAD=.① 求抛物线的解析式;② 判断抛物线的顶点E是否在直线CD上,并说明理由;③ 在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.
已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BFDE是平行四边形.
用配方法解方程:2x2+4x﹣6=0.
解一元二次方程:3x2+2x﹣5=0.
邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,平行四边形ABCD中,若AB=1,BC=2,则平行四边形ABCD为1阶准菱形. (I)判断与推理: (i)邻边长分别为2和3的平行四边形是_________阶准菱形; (ii)为了剪去一个菱形,进行如下操作:如图2,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,请证明四边形ABFE是菱形. (Ⅱ)操作与计算: 已知平行四边形ABCD的邻边长分别为l,a(a>1),且是3阶准菱形,请画出平行四边形ABCD及裁剪线的示意图,并在图形下方写出a的值.
在进行二次根式的化简与运算时,如遇到,,这样的式子,还需做进一步的化简:==.①==.②===.③ 以上化简的步骤叫做分母有理化。还可以用以下方法化简:====.④ 1.请用不同的方法化简 (1)参照③式化简=____________ (2)参照④式化简____________ 2.化简:+++…+