如图,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2 cm的速度匀速运动,Q在边BC上沿BC方向以每秒1 cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.
AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E. (1)如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线; (2)如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由; (3)如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.
已知关于x的一元二次方程k-(4k+1)x+3k+3=0. (1)试说明:无论k取何值,方程总有两个实数根; (2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B. (1)求证:△ADF∽△DEC; (2)若AB=8,AD=6,AF=4,求sinB的值.
如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD. (1)求证:四边形ABCD是等腰梯形; (2)已知AC=6,求阴影部分的面积.
如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).