已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e=(1)求椭圆方程;(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2
(本小题共13分)某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区附近有A,B,C三家社区医院,并且他们的选择是相互独立的.(Ⅰ)求甲、乙两人都选择A社区医院的概率;(Ⅱ)求甲、乙两人不选择同一家社区医院的概率;(Ⅲ)设4名参加保险人员中选择A社区医院的人数为ξ,求ξ的分布列和数学期望.
(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一点.(Ⅰ)求证:BC⊥AM;(Ⅱ)若M,N分别是CC1,AB的中点,求证:CN //平面AB1M;(Ⅲ)若,求二面角A-MB1-C的大小.
(本小题共13分)已知函数.(Ⅰ)求函数的最小正周期和值域;(Ⅱ)若为第二象限角,且,求的值.
(本小题满分14分)已知数列满足,数列满足,数列满足.(1)求数列的通项公式;(2)试比较与的大小,并说明理由;(3)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢? 若会,求出的取值范围;若不会,请说明理由.
(本小题满分13分)省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时)的关系为,其中是与气象有关的参数,且,若用每天的最大值为当天的综合放射性污染指数,并记作.(1)令,,求t的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?