袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球。(1)试问:一共有多少种不同的结果?请列出所有可能的结果; (2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。
设函数,其中向量,,.(1)求的最小正周期与单调递减区间;(2)在△中,、、分别是角、、的对边,已知,,△的面积为,求的值.
已知圆C:。(1)求m的取值范围。(2)当m=4时,若圆C与直线交于M,N两点,且,求的值。
(本小题满分14分)已知椭圆()的左、右顶点分别为,,且,为椭圆上异于,的点,和的斜率之积为.(1)求椭圆的标准方程;(2)设为椭圆中心,,是椭圆上异于顶点的两个动点,求面积的最大值.
(本小题满分14分)已知函数(1)当时,求函数的最值;(2)当时,过原点分别作曲线和的切线,已知两切线的斜率互为倒数,证明:
(本小题满分12分)如图,为圆O的直径,是圆上不同于,的动点,四边形为矩形,且,平面平面.(1)求证:平面.(2)当点在的什么位置时,四棱锥的体积为.