在极坐标系中,已知两点O(0,0),B(2,). (1)求以OB为直径的圆C的极坐标方程,然后化成直角方程; (2)以极点O为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.
如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,,E为中点,(1)求证;CE∥平面,(2)求证:求二面角的大小.
已知向量.(1)求函数的单调增区间;(2)已知锐角△ABC中角A,B,C的对边分别为a,b,c.其面积,求b+c的值.
一次函数是上的增函数,,已知.(1)求;(2)若在单调递增,求实数的取值范围;(3)当时,有最大值,求实数的值.
已知平面内两点.(1)求的中垂线方程;(2)求过点且与直线平行的直线的方程;(3)一束光线从点射向(Ⅱ)中的直线,若反射光线过点,求反射光线所在的直线方程.
已知直三棱柱中,,是中点,是中点.(1)求三棱柱的体积;(2)求证:;(3)求证:∥面.