为迎接建党90周年,某班开展了一次“党史知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如图频率分布表:(1)求的值;(2)决赛规则如下:为每位参加决赛的选手准备四道题目,选手对其依次作答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对一道,则获得二等奖.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于90分的频率的值相同.设该同学决赛中答题个数为X,求X的分布列以及X的数学期望.
已知数列的前n项和为,并且满足,,(1)求的通项公式;(2)令,问是否存在正整数,对一切正整数,总有,若存在,求的值;若不存在,说明理由.
(10分)已知分别在的边和上,且,设. (1)若为线段CM的中点,用,表示;(2)设与交于点Q,求的值.
在△ABC中,角所对的边分别是,且 (1)求; (2)若,求.
(本题12分)已知函数(1)当=2时,求的零点;(2)若是的极值点,求的[1,]上的最小值和最大值;(3)若在上是增函数,求实数的取值范围。
(本题11分)在△ABC中,角A、B、C的对边分别为、、,且(1)判断△ABC的形状;(2)设向量=(2,) , =(,-3)且⊥,(+)(-)=14,求S△ABC的值。