如图,已知是长轴为的椭圆上三点,点是长轴的一个顶点,过椭圆中心,且.(1)建立适当的坐标系,求椭圆方程;(2)如果椭圆上两点使直线与轴围成底边在轴上的等腰三角形,是否总存在实数使?请给出证明.
.已知等差数列中,公差,其前项和为,且满足,. (1)求数列的通项公式; (2)设(),求数列的前项和; (3)设,试比较与的大小.
已知为实数,函数. (1)若,求的值及曲线在处的切线方程; (2)求在区间上的最大值.
如图,在四棱锥中,,,底面是菱形,且,为的中点. (1)求四棱锥的体积; (2)侧棱上是否存在点,使得平面?并证明你的结论.
已知,,函数 (1)求函数的周期; (2)函数的图像可由函数的图像经过怎样的变换得到?
如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000,四周空白的宽度为10,两栏之间的中缝空白的宽度为5,怎样确定广告的高与宽的尺寸(单位:),能使矩形广告面积最小?