(本题满分16分,第1小题4分,第2小题6分,第3小题6分) 设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为的直角三角形.过B1作直线l交椭圆于P、Q两点. (1) 求该椭圆的标准方程; (2) 若,求直线l的方程; (3) 设直线l与圆O:x2+y2=8相交于M、N两点,令|MN|的长度为t,若t∈,求△B2PQ的面积的取值范围.
如图,以正方体的三条棱所在直线为坐标轴,建立空间直角坐标系.点在正方体的对角线上,点在正方体的棱上. (1)当点为对角线的中点,点在棱上运动时,探究的最小值; (2)当点为棱的中点,点在对角线上运动时,探究的最小值; (3)当点在对角线上运动,点在棱上运动时,探究的最小值. 由以上问题,你得到了什么结论?你能证明你的结论吗?
圆与两平行线,相切,圆心在直线上,求这个圆的方程.
设定点,动点在圆上运动,以,为两边作平行四边形,求点的轨迹.
圆心在直线上,且到轴的距离恰等于圆的半径,在轴上截得的弦长为,求此圆的方程.
等腰梯形的底边长分别为6和4,高为3,求这个等腰梯形的外接圆的方程,并求这个圆的圆心坐标和半径长.