某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=。(1) 该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2) 该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,最大?
已知,是第三象限角,求.
如图,已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在轴上的截距为,交椭圆于A、B两个不同点. (1)求椭圆的方程; (2)求m的取值范围; (3)求证直线MA、MB与轴始终围成一个等腰三角形.
命题p:关于的不等式对于一切恒成立,命题q:指数 函数是增函数,若为真,为假,求实数的取值范围;
某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元。该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么在一个生产周期内该企业生产甲、乙两种产品各多少吨可获得最大利润,最大利润是多少?(用线性规划求解要画出规范的图形)
已知为椭圆的左、右焦点,是椭圆上一点。 (1)求的最大值; (2)若且的面积为,求的值;