某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=。(1) 该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2) 该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,最大?
利用余弦函数y=cosx的图像,比较x=0,x=附近的平均变化率的大小。
一书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,并假设该书均匀投放市场,问此书店分几次进货、每次进多少册,可使所付的手续费与库存费之和最少?
某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产x吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)
当室内的有毒细菌开始增加时,就要使用杀菌剂.刚开始使用的时候,细菌数量还会继续增加,随着时间的增加,它增加幅度逐渐变小,到一定时间,细菌数量开始减少.如果使用杀菌剂t小时后的细菌数量为b(t)=105+104t-103t2. (1)求细菌在t=5与t=10时的瞬时速度;(2)细菌在哪段时间增加,在哪段时间减少?为什么?