在一条笔直的河道上依次有A、B、C三个港口,甲、乙两船同时分别从A、B 港口出发,沿直线匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示(点P、Q为图象的交点).(1)填空:A、C两港口间的距离为 km,a= ;(2)求y1与x的函数关系式,并写出自变量x的取值范围;(3)求图中点P的坐标,并解释该点坐标所表示的实际意义。
如图,已知在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于点G. (1)求证:△ADE≌△CBF; (2)若DE=BE,则四边形AGBD是什么特殊四边形?并证明你的结论.
如图所示,在矩形ABCD中,对角线AC,BD相交于点O,∠AOD=120°,AB+AC=9,求对角线BD的长及矩形ABCD的面积.
如图,在直角梯形ABCD中,AD∥BC,AD⊥DC,点A关于对角线BD的对称点F刚好落在腰DC上,连接AF交BD于点E,AF的延长线与BC的延长线交于点G,M,N分别是BG,DF的中点. (1)求证:四边形EMCN是矩形; (2)若AD=2,,求矩形EMCN的长和宽.
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF. (1)BD与CD有什么数量关系?并说明理由. (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
如图所示,在□ABCD中,对角线AC、BD交于点O,直线EF经过点O交BC于F、交AD于E,且AF⊥BC.求证:四边形AFCE是矩形.