(本小题满分12分)为了参加年贵州省高中篮球比赛,某中学决定从四个篮球较强的班级中选出人组成男子篮球队代表所在地区参赛,队员来源人数如下表:
(I)从这名队员中随机选出两名,求两人来自同一班级的概率;(II)该中学篮球队经过奋力拼搏获得冠军.若要求选出两位队员代表冠军队发言,设其中来自高三(7)班的人数为,求随机变量的分布列及数学期望.
(本小题满分12分)已知命题:,使成立,命题:恒成立。(1)写出命题的否定;(2)若或为真,且为假,求实数的取值范围。
已知函数,其中a为实数。(1)求函数的单调区间;(2)若函数对定义域内的任意x恒成立,求实数a的取值范围。(3)证明,对于任意的正整数m,n,不等式恒成立。
已知函数,其中。(1)若直线是曲线的切线,求a的值;(2)设,求在区间上的最大值。(其中e为自然对数的底数)。
有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计)。有人应用数学知识作如下设计:在钢板的四个角处各切去一个全等的小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长。(1)请你求出这种切割、焊接而成的长方体容器的最大容积;(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积。
设,其中a为正实数。(1)当时,求的极值点;(2)若在R不是单调函数,求a的取值范围。