(本小题满分14分)如图所示,四棱锥中,底面为正方形,平面,,,,分别为、、的中点.(1)求证:;(2)求平面EFG与平面ABCD所成锐二面角的余弦值.
已知函数 (1)求的最小正周期;( 6分) (2)当时,求的最小值以及取得最小值时的集合.
已知数列{an}满足a1= ,且有an-1-an-4an-1an="0," (1)求证:数列 为等差数列; (2)试问a1a2是否是数列中的项?如果是, 是第几项;如果不是,请说明理由.
已知,;且, 求
(本小题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,长轴长为,离心率为,经过其左焦点的直线交椭圆于、两点(I)求椭圆的方程; (II)在轴上是否存在一点,使得恒为常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.
(本小题满分12分)。 如图,过抛物线(>0)的顶点作两条互相垂直的弦OA、OB。 ⑴设OA的斜率为k,试用k表示点A、B的坐标; ⑵求弦AB中点M的轨迹方程。