(本小题满分12分)已知数列{an}的前n项和为Sn,点在直线上.数列{bn}满足,前9项和为153.(Ⅰ)求数列{an}、{bn}的通项公式;(Ⅱ)设,数列{cn}的前n和为Tn,求使不等式对一切都成立的最大正整数k的值.
(本小题满分14分)已知数列的前项和和通项满足(是常数且)。(Ⅰ)求数列的通项公式;(Ⅱ) 当时,试证明;(Ⅲ)设函数,,是否存在正整数,使对都成立?若存在,求出的值;若不存在,请说明理由.
(本小题满分12分)已知函数.(Ⅰ)求函数的周期和最大值;(Ⅱ)已知,求的值.
(本小题满分14分)如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=1200,F为AE中点。(Ⅰ) 求证:平面ADE⊥平面ABE ;(Ⅱ)求二面角A—EB—D的大小的余弦值;(Ⅲ)求点F到平面BDE的距离。
(本小题满分14分)已知数列的首项,,.(Ⅰ)求的通项公式;(Ⅱ)证明:对任意的,,;(Ⅲ)证明:.
(本小题满分14分)如图,已知直线l:与抛物线C:交于A,B两点,为坐标原点,。(Ⅰ)求直线l和抛物线C的方程;(Ⅱ)抛物线上一动点P从A到B运动时,求△ABP面积最大值.