已知等比数列的各项均为正数,且成等差数列,成等比数列.(1)求数列的通项公式;(2)已知,记,,求证:
已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形F1B1 F2B2是一个面积为8的正方形. (1)求椭圆C的方程; (2)已知点P的坐标为P(-4,0), 过P点的直线L与椭圆C相交于M、N两点,当线段MN的中点G落在正方形内(包含边界)时,求直线L的斜率的取值范围.
如图四棱锥中,底面是平行四边形,平面是的中点,. (1)试判断直线与平面的位置关系,并予以证明; (2)若四棱锥体积为,,求证:平面.
甲、乙两人玩一种游戏:在装有质地、大小完全相同,编号分别为1,2,3,4,5五个球的口袋中,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢. (1)求甲赢且编号和为6的事件发生的概率; (2)这种游戏规则公平吗?试说明理由.
已知函数的图象与y轴的交点为,它在y轴右侧的第一个最高点和第一个最低点的坐标分别为 (1)求的解析式及的值; (2)若锐角满足的值.
已知等差数列的前项和为,且满足:,. (1)求数列的通项公式; (2)设,数列的最小项是第几项,并求出该项的值.