如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为,已知S的身高约为米(将眼睛距地面的距离按米处理)(1) 求摄影者到立柱的水平距离和立柱的高度;(2) 立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
已知,不等式的解集是, (1)求的解析式; (2)若对于任意,不等式恒成立,求的取值范围.
已知椭圆G:(a>b>0)的离心率为,右焦点为(,0).斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2). (1)求椭圆G的方程; (2)求△PAB的面积.
已知数列是等比数列,,,数列的前项和满足. (Ⅰ)求数列和的通项公式; (Ⅱ)若,求数列的前项和.
正项数列满足. (1)求数列的通项公式; (2)令,求数列的前项和.
给定两个命题,p:对任意实数都有恒成立;q:关于的方程有实数根;若为真,为假,求实数的取值范围.