如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为,已知S的身高约为米(将眼睛距地面的距离按米处理)(1) 求摄影者到立柱的水平距离和立柱的高度;(2) 立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
选修4-2:矩阵与变换(本小题满分10分) 已知 ,矩阵所对应的变换 将直线 变换为自身,求a,b的值。
选修4—1:几何证明选讲 已知AB是圆O的直径,P是上半圆上的任意一点,PC是的平分线,是下半圆的中点. 求证:直线PC经过点.
(本小题满分16分)已知为实数,函数,函数. (1)当时,令,求函数的极值; (2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.
(本小题满分16分) 在数列 中,已知 ,为常数. (1)证明: 成等差数列; (2)设 ,求数列 的前n项和 ; (3)当时,数列 中是否存在三项 成等比数列,且也成等比数列?若存在,求出的值;若不存在,说明理由.
【原创】已知椭圆,椭圆过点且与抛物线有一个公共的焦点. (1)求椭圆方程; (2)若点在椭圆上,点在椭圆上,且满足,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.